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A class of self-sustained Macro ElectroMechanical (MaEMS) Systems is made up of a

Rayleigh–Duffing oscillator actuating a mechanical arm through a magnetic coupling. In

this paper, to avoid experimental constraints, an audio amplifier is added to the device.

Quenching phenomenon, bifurcation and chaos are predicted and shown to occur in a

for the quenching phenomenon is derived. Chaos and bifurcation are predicted using

Lyapunov exponent and bifurcation diagram. A prototype of device is designed and

fabricated. Experimental results for this device that are consistent with results

from theoretical investigations are presented and convincingly show quenching

phenomenon, bifurcation and chaos.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

ElectroMechanical Systems (EMS) are made of two main parts (electrical and mechanical) coupled together via
magnetic, piezoresistive, piezoelectric and capacitive couplings [1–13]. Depending on their dimensions, they are called
nano (dimension less than one cubic micrometer), micro (dimension less than one cubic millimeter), and
Macro-ElectroMechanical Systems, denoted as NEMS, MEMS and MaEMS respectively. If MEMS and NEMS are now more
attractive worldwide, MaEMS still have interest since they are present in various engineering and domestic equipments.
Moreover, their modeling equations, which are not more different than those of MEMS and NEMS, present some
complexities which are interesting and stimulating challenges, both mathematically and numerically. A large class of
magnetically actuated MaEMS are modeled by a set of coupled nonlinear differential equations which sometime involve a
time delay [5–10]. MaEMS can be ideal, when the excitation is not influenced by the response of the vibrating system, and
nonideal MaEMS in the other case. See Refs. [11,12] for some examples of nonideal MaEMS. Our attention, in this paper is
focussed on ideal magnetically actuated MaEMS with a flexible arm and we assume an ideal transfer of energy between the
parts of the system. They can be integrated in wide range of applications such as pharmaceutical and cosmetic industries.

Electromechanical systems can be divided into two main classes named autonomous and non-autonomous systems.
Non-autonomous electromechanical systems need external excitation to run. Many of them are described by equations of
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the general form

d2y

dt2
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þFðyÞ ¼H x;
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qt
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� �
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where the mechanical displacement x(z,t) is taken as a function of time t and position z along the flexible arm and F(y) and
f(x,z) are functions depending on system properties. Hðx;dx=dtÞ, hðx;dx=dtÞ are related to the coupling; their nature
depends on the type of coupling. These functions show how the electric signal is converted into mechanical motion and
vice versa. Many nonlinear phenomena are known from such systems: multiperiodic motion, bifurcation, chaos,
parametric and sub or super resonances which could have undeniable applications in engineering (see Refs. [5–13] and
references therein for more details).

Another important class of electromechanical systems are self-sustained with one component being of the type Van der
Pol or Rayleigh oscillators. The particular interest in this class of EMS is certainly related to the fact that no external
excitation is needed. One large class of autonomous electromechanical devices is described by the following type of
equations
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�e1 1�g y;
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dt
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dt
þFðyÞ ¼H x;

qx

qt

� �
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� �
: (4)

These equations are those of systems where self-sustained oscillations are of electric origin (the case considered in this
work) and its nature depends on the form of the dissipative function gðy;dy=dtÞ. If gðy;dy=dtÞ contained only odd power of
the dynamics variable y, that is gðy;dy=dtÞ ¼

PN
n ¼ 1 a2ny2n, the system would be driven by a Van der Pol oscillator. But if

gðy;dy=dtÞ ¼
PN

n ¼ 1 a2nðdy=dtÞ2n, it would be a Rayleigh oscillator. The system will present Duffing nonlinearity if F(x)
and/or f(x,z) can take the form FðxÞ ¼

PN
n ¼ 0 a2nþ1x2nþ1 with a2nþ1a0 for n=0 and 1. It has been shown that the Rayleigh

type oscillator presents good stability and a strong attractor [5,6,14–16]. Bifurcations and chaos have been observed
theoretically in MAEMS described by equation of the form (3) and (4) [10] and in MaEMS with rigid arm [5,6]. Extension
has been made on synchronization of MaEMS [5,6].

Considering all the potentially interesting applications and theoretical work done so far on the dynamics of self-
sustained MaEMS, a very important step should be reached, that is the realization and experimental study of such systems.
In this paper, we extend the work in [10] to experimental simulation. Analog simulation of a self-sustained mass–spring-
damper system described in Refs. [5,6] is shown in Ref. [17] while the experimental realization and simulation is shown in
Ref. [13]. A Rayleigh–Duffing (RD) oscillator driving a mechanical flexible arm is considered. In order to increase the
actuating mechanical force, the device is modified by integrating an audio amplifier. A brief discussion of the
characteristics of the audio amplifier is given. The modeling equations of the device are then derived. Three nonlinear
phenomena are investigated: quenching phenomenon, bifurcation and chaos. Finally, a nonlinear MaEMS is designed and
fabricated. Experimental verification of the theoretical results is then made. Experimental behavior of the mechanical arm
is verified using a motion detector or an accelerometer.

The paper is presented as follows. Section 2 deals with the characterization of the audio amplifier and the modeling
equations of the system are derived. Section 3 presents results from theoretical analysis while in Section 4, those from
experimental simulations are presented. Section 5 is for the conclusion and hints of applications.

2. The modified EMS

We consider the device of Fig. 1. The device is made up of an electric implementation of a Rayleigh–Duffing oscillator
actuating a mechanical cantilever arm. The mechanical arm is a flexible structure, which is connected to the magnet
through a thin rigid rod. Between the electric circuit and the permanent magnet, the device is modified by adding an audio
amplifier in order to increase the delivery electric signal to the magnet and consequently, the Laplace actuating force. In
fact, a simple analysis shows that for such devices, without the amplifier, the Laplace force is in the order of 10�2 N for a
magnet in the same order, and in order to move the mechanical arm the require force is in the order of 10�1 N (the order of
the weight of the mechanical elements). Moreover, the natural frequency of the RD oscillator is generally greater than
1 kHz while the natural frequency of the mechanical arm is in the Hz domain. All these frequencies belong to the audio
frequency. These problems of amplitude and frequency can be generalized to MaEMS and, contrasted with MEMS and
NEMS. As generally done for magnetic bearing systems [1,2,7–9] an amplifier can be used to increase the amplitude of the
signal. The amplifier is made of an integrated circuit of type TDA2050 [18] polarized with direct current (DC) of voltage of
50 V; it presents a very low distortion output signal and a higher output power 50 W. The parameters of the audio amplifier
are listed in Table 1; with these parameters, the device presents a voltage gain of 27 and it can also affect the output
frequency. We use an operational amplifier of type LF352N and multiplier of type AD633 polarized with a DC voltage 12 V.
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Fig. 1. The modified self-sustained EMS.

Table 1
Parameter of the audio amplifier.

Components Symbol Values Units

Resistance R1 22,000 O
R2 22,000 O
R3 22,000 O
R4 10,000 O
R5 330 O
R6 10 O

Capacitance C1 47�10�6 F

C2 1�10�6 F

C3 3.3�10�3 F

C4 47�10�6 F

C5 10�8 F

Polarization Vcc 50 V

Input impedance Ze 500 kO
Output impedance Zs 4 O
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The analog method provides a number of facilities for controlling dimensionless parameters. In fact, it is easier to change
a dimensionless parameter by adjusting only one experimental component [17,19]. A second coil is added to the system for
a feedback connection of the mechanical part (wire represented by dashed line).
2.1. Characteristic equations of the audio amplifier

Assume a voltage V at the input of the audio amplifier is delivered in the coupling domain (see Fig. 2). After some
calculations [20], one obtains the following expressions for the current i0 through the magnet and the output voltage vs

vs ¼ A12V�A11Bl0
qy

qt
dðx�x1Þ; (5)

i0 ¼ A22V�A21Bf l0
qy

qt
dðx�x1Þ; (6)
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Fig. 2. The audio amplifier: (a) synoptic of the amplifier; (b) synoptic of the coupling.

C.A. Kitio Kwuimy et al. / Journal of Sound and Vibration 329 (2010) 3137–31483140
with
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� �
; K0 ¼ 875 and V0 ¼ 20 V ; (7)

where r is the total resistance of the induced circuit, the symbol Ri"Rj gives the equivalent resistance of Ri and Rj taken in
parallel.

All physical parameters of the audio amplifier are fixed. In the rest of the paper, the labels above for the resistances and
condensers are used to designate the parameter of the RD oscillator. Without loss of generality, the value L of the self in the
coupling domain is neglected.

2.2. Modeling equation of the device

Using Newton and Hooke laws for the mechanical arm and Kirchhoff laws for the electric circuit, the following set of
coupled nonlinear differential equations for the device are obtained

d2vs

dt2
�e1

dvs

dt
1�

dvs

dt

� �2
" #

þo2
0vsþbv3

s ¼�
n2Bf l0aR5T

n1R8R6R7C1C2

qW

qt
dðX�X1Þ; (8)

Sr q2W

qt2
þ lþ

B2
f l20A21

l
dðX�X1Þ

" #
qW

qt þEI
q4W

qX4
¼

Bf l0A22R6R7C2

lR5ao0

dvs

dt dðX�X1Þ (9)

where W is the transversal displacement taking as a function of time t and abscisse X (see Fig. 1), vs is the electric signal
delivered by the RD oscillator. S is the transversal section of the flexible arm, r the mass density, E the Young modulus, I the
moment of inertia, �l qW

qt is the load arising from the viscosity of the air and friction in the coupling domain, l the length of
the flexible arm, Bf is the intensity of the magnet, l0 the length of the copper wire used in the coupling domain, X1 the
contact point on the flexible arm and dð:Þ stands for the Dirac delta function. The physical and geometrical value of the
parameters of the flexible arm are given in Table 2. The other parameters of Eqs. (8) and (9) are defined as functions of
electric components as follows

e1 ¼
R7Tn

R4R6C2
; n¼ R7C2

R4C1
; o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R5T2

R3R6R7C1C2

s
; b¼

R5T2

100R1R6R7C1C2a2
;

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

7C3
2

100nR2C1T2

s
and T ¼ 10�5 is a characteristic time constant ½1�:
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Table 2
Characterization of the mechanical arm.

Designation Symbol Values Units

Mass density r 1.60 103 kg m�3

Young modulus E 6.10 1011 N m�2

Length l 205 mm

Thickness h0 0.5 mm

Width h1 21 mm

Natural frequency k2

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

h0h1r

s
48.3 Hz
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The boundary conditions are given as

WðX; tÞ ¼ qWðX; tÞ
qX

¼ 0 at X ¼ 0 and

q2WðX; tÞ
qX2

¼
q3WðX; tÞ

qX3
¼ 0 at X ¼ l (10)

the boundary conditions express that the displacement and rotation are constraned to zero at X=0 and the shear force and
bending moment are constrained to zero at X= l.

In dimensionless form, Eqs. (8) and (9) are rewritten as

d2us

dt2
�e1

dus

dt
1�

dus

dt

� �2
" #

þo2
0usþbu3

s ¼�Z0

dy

dt
dðx�x1Þ; (11)

q2y

qt2
þe2

qy
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þa2

1

q4y

qx4
¼ Z2

dus

dt
dðx�x1Þ; (12)

with

yðx; tÞ ¼
qyðx; tÞ

qx
¼ 0 at x¼ 0 and

q2yðx; tÞ

qx2
¼

q3yðx; tÞ

qx3
¼ 0 at x¼ l (13)

and

e2 ¼
lT

rS
þ

A21B2
f l20T

rS
d2
ðx�x1Þ; a1 ¼

ffiffiffiffiffiffiffiffiffiffi
EIT2

rSl4

vuut ; Z2 ¼
Bf l0A22TR6R7C2U

l2R5arS
; Z0 ¼

Bf laA21rR5o2
0l0

R8R6R7C1C2U
;

where vs has been normalized relative to a characteristic voltage of U=1 V, y=W/l, and t¼ Tt.

3. Nonlinear phenomena in the modified EMS

Many works have been devoted to mathematical analysis and numerical simulation of a device modeled by equations of
the type (8) and (9), see Refs. [1–10] for instance. Amongst useful nonlinear phenomena found, there are quenching
phenomenon, bifurcation, chaos, sub and super harmonic, and hysteresis. In the following section, our attention is focused
on quenching phenomenon, bifurcation and chaos. In fact, many engineering applications can be found for these
phenomena as discussed later on in this paper.

3.1. Quenching phenomenon

For a set of parameters of a MaEMS, the device can remain at rest (at the stable static equilibrium) even if one or two
parts of the device taken alone are in a dynamical state. This is the so-called quenching phenomena. Quenching
phenomena was earlier reported in self-sustained dynamics by Tondl [16] in 1976. From linear stability analysis [15], one
can show that the unique fixed point ðus ¼ 0;dus=dt¼ 0; y¼ 0; qy=qt¼ 0Þ of Eqs. (11) and (12) is stable for

e1oe2; (14)

e2�
Z0mZ2m

e1
o�

e2ðâ
2
0�1Þ2o2

0

ðe2�e1Þðe2�e1â0Þ
r0 (15)
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with

Zim ¼ Zi

sinkx1þsinhkx1

coskx1þcoshkx1
½coshkx1�coskx1�þsinkx1�sinhkx1; i¼ 0;

2coskcoshkþ1¼ 0; â0 ¼
o0

o0m
; and o0m ¼ a2

1k; : (16)

The expression of Zim is obtained after transforming Eqs. (8) and (9) into a set of two ordinary differential equations
using the Galerkin modal approximation limited to a single mode of vibration. The subscript m stands for the mode of
vibration. The reader is invited to see Ref. [10] for details. The linear stability of the unique steady state of the system
induces the mathematical conditions for the quenching phenomenon. In fact if conditions (14) and (15) are satisfied, there
will be no mechanical response from the system. Inequality (15) can be rewritten as

Z0m4sup
e2e1

Z2m

;
e1e2ð ~a2

0�1Þ2o2
0

Z2mðe2�e1Þðe2�e1 ~a0Þ

" #
: (17)

This constraint on Z0m yields the following constraint for the coupling resistance R8

R8o Inf
Bf laA21rR5o2

0l0
R8R6R7C1C2U

Z2m

e2e1
;
Bf laA21rR5o2

0l0
R8R6R7C1C2U

Z2mðe2�e1Þðe2�e1 ~a0 Þ

e1e2ð ~a2
0�1Þ2o2

0

" #
: (18)

Fig. 3 illustrates the quenching phenomenon for the following values of the dimensionless parameter b¼ 0:01; e1 ¼ 0:01;
Z0 ¼ 0:05 and Z2 ¼ 0:2 which correspond to the physical values listed in Table 3a (a refers to the third column of the table)
with the frequency of the electric circuit equal to 141 kHz, while the mechanical one is 48.3 Hz. These curves present the
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Fig. 3. Theoretical illustration of the quenching phenomenon: (a) amplitude of the electrical part; (b) amplitude of the mechanical part.

Table 3
Physical values of the parameters of the RD oscillator for quenching phenomena.

Components Symbol Theoretical values Experimental values Units

Resistance R1 11.9 11.9 O
R2 178 178 O
R3 98 98 O
R4 5000 4680 O
R5 23 426 9850 O
R6 9860 9860 O
R7 3320 3320 O
R8 Variable Variable O

Capacitance C1 4.47�10�8 12.68�10�9 F

C2 1.6�10�8 12.18�10�9 F

Magnet Bf 16 16 m T

Length of wire l0 54 54 m

Resistance of the coupling zone r 4 4 O
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maximum amplitude of the electric signal and mechanical displacement (at the free end) as a function of the mechanical
dissipative coefficient e2. For 0:035oe2o0:06, the amplitude response of the two parts of the system is zero. The results are
obtained from finite difference simulation of Eqs. (11) and (12) (curve in dashed line), Galerkin approximation (curve in point)
and averaging method (curve in line). See Ref. [14] for details on the calculations and simulations. This double inequality of e2

suggest the domain of the overall damping coefficient for the quenching phenomenon, that is l 2�0:664;1:189½ in kgs�1.
3.2. Bifurcation and chaos

Many chaotic indicators are generally used to find chaos in dynamical system [3–6,10]. Amongst them, the Lyapunov
exponent is the most precise. The Lyapunov exponent expresses the convergence (when negative) or the divergence (when
positive) of nearby trajectories. Therefore, a system is said to be chaotic if the exponent is positive which corresponds, in
the bifurcation diagram, to a cloud of points. The system is said to be periodic if the exponent is negative, this corresponds
to a curve lines in the bifurcation diagram. The exponent is computed as

lyn¼ lim
t-1

lnðdðtÞÞ

t
with d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq2þ

ddq

dt

� �2

þ
Xn

i ¼ 1

dv2
i þ

Xn

i ¼ 1

qdvi

qt

� �2
vuut ; (19)

where dq and dvi are respectively the variations of q and vi. In this expression, vi =v(ih,t), h=1/n and n being the number
of the discrete infinitesimally interval considered on the flexible arm length. Fig. 4a presents the exponent as a
Fig. 4. Chaotic characterization of the device: (a) Lyapunov exponent; (b) bifurcation diagram of the mechanical arm; (c) chaotic phase diagram of the

electric part; (d) chaotic phase diagram of the mechanical part.
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Table 4
Physical values of the parameters of the RD oscillator for bifurcation and chaos.

Components Symbol Theoretical values Experimental values Units

Resistance R1 11.9 11.9 O
R2 178 178 O
R3 98 98 O
R4 5000 4680 O
R5 97.3 9850 O
R6 9860 9860 O
R7 3320 3320 O
R8 Variable Variable O

Capacitance C1 1.8�10�8 1.6�10�6 F

C2 1.6�10�8 3.3�10�6 F

Magnet Bf 16 16 m T

Length of wire l0 54 54 m

Resistance of the coupling electment r 4 4 O
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function of the coupling coefficient Z0 for a set of system parameters defined as b¼ 0:01, e1 ¼ 2:466, Z2 ¼ 3:518, s¼ 0,
e2 ¼ 0:01 which correspond to the physical values of Table 4. The corresponding bifurcation diagram of the mechanical
arm is shown in Fig. 4b. One finds from these curves that, for Z0 2 ½1:85;2:3�, there is a series of domains corresponding
to chaotic dynamics, out of this domain, the device has a periodic motion. The chaotic phase portrait of the system
plotted in Fig. 4c (for the electric part) and Fig. 4d (for the mechanical part), for a value of Z0 ¼ 2:2 using finite
difference simulation, is consistent with the bifurcation diagram and the Lyapunov exponent.
4. Experimental verification of nonlinear phenomena

4.1. The readout principle

The best way to measure the dynamical characteristic of an oscillating body is to use either a motion detector or an
accelerometer. Here an accelerometer of type DE-ACCM2G polarized with a DC voltage of 3.5 V is used. The accelerometer
is attached on the mechanical arm and the delivered electric signals are observed through an oscilloscope of type HM303-6
(Hameg Instrument). The device delivers a good signal only for high frequencies (4100 kHz); for a low frequency, the
signals delivered have been found to be very weak and have appeared as noise on the oscilloscope. Thus, for lower
frequencies the video analyzer function of a motion detector of type Looger Pro 3.6.1 is used. Data are extracted from the
video of the displacement of the mechanical arm. To observe the signal from the electronic circuit, a two-input probes
oscilloscope is used. The inputs are then connected to the points corresponding to the founding target signal on the electric
circuit.

An experimental model of nonlinear MaEMS, shown in Fig. 1, has been designed and fabricated. A photographic image
of the parts of the device is shown in Fig. 5. In the experiment, the frequency of the electric circuit differs slightly from that
of the mechanical part; moreover, according to Sections 2 and 3, imperfections in the fabricated structure will affect
quantitatively our results. However, since R8 affects only the coupling term Z0, the device can still be turned to give more
accurately or complex behaviors for another set of values of the parameters of the MaEMS.
4.2. Quenching phenomenon

In order to test whether the device can experimentally achieve quenching phenomenon, we have taken the values of
Table 3b (b stands for the fourth column of the table) which correspond to b¼ 0:04; e1 ¼ 0:042;Z2 ¼ 7:5� 10�8 and
Z0 ¼ 1:3� 1012=R8: We observed that as the RD device oscillates, if we connect the mechanical arm, both parts of the
system become at rest. For instance, after connecting the flexible arm and increasing the coupling resistance R8 from 0O,
both parts of the system do no longer vibrate. The phenomenon can be explained as a result of quenching phenomenon
in both parts of the system. That is, the connection of the flexible arm annihilate the oscillations. The interval of
quenching phenomenon is obtained using relation (15) (that is the interval of the stability of trivial fixed point). It is
observed that the quenching phenomenon appears for all R8o2:8� 106O. The quenching phenomenon is illustrated
experimentally by whistling on the coupling domain and by noise (signal with very low amplitude and poor quality) on
the oscilloscope.
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Fig. 5. Experimental realization of the device: (a) the electric circuit; (b) the mechanical arm; (c) the audio amplifier.

Fig. 6. Periodic behavior of the electric circuit: (a) temporal evolution; (b) phase portrait.
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4.3. Bifurcation and chaos

Regarding bifurcations and chaos in the system, we change two parameters of the RD oscillator according to
C1 ¼ 1:5� 10�6 F and C2 ¼ 3:3� 10�6 F, which corresponds to a frequency of 787.58 Hz (low frequency) and
b¼ 1:6� 10�11; e1 ¼ 3:5� 10�4;Z0 ¼ ð3:4� 105

Þ=R8 and Z2 ¼ 7:5� 10�8. By varying R8, a sequence of bifurcations with
regular and chaotic dynamics is obtained. Regular dynamics is obtained for R8o2:2 kO. For R8 ¼ 1 kO (Z0 ¼ 3:4� 105),
temporal evolution and phase portraits in (vs;dvs=dt) and (yð1; tÞ; qy=qtð1; tÞ) planes are plotted in Figs. 6 and 7. Fig. 6 is a
photographic image of the oscilloscope and Fig. 7 is obtained from a motion detector. The curves illustrate multiperiodic
dynamics with ‘‘breathing’’. The ‘‘breathing’’ is caused by the elasticity of the mechanical arm. For the electric signal, the
scale is 2 V per division and the maximum voltage is obtained as 4 V. The two maxima are approximatively equals. For the
mechanical part, a direct measurement gives for the deflection 1.6 and 1.3 cm.
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Fig. 7. Periodic behavior of the mechanical arm: (a) temporal evolution; (b) phase portrait.

Fig. 8. Chaotic phase portrait: (a) the electric circuit; (b) the mechanical arm; (c) the temporal evolution of the mechanical arm.

C.A. Kitio Kwuimy et al. / Journal of Sound and Vibration 329 (2010) 3137–31483146
Chaotic behavior is illustrated by the phase portrait plotted in Fig. 8 for R8 ¼ 2:6 kO ðZ0 ¼ 130:77Þ. The system remains
in a chaotic behavior until a larger value of R8 where the quenching phenomenon appears. This bifurcation sequence
qualitatively agrees with the bifurcation diagram plotted in Fig. 4b.

A remark here is that, although, we have assumed that there is a signal going from the amplifier to the electronic circuit
(by idealizing the composites), the effect of the audio amplifier can be observed experimentally as a weak signal. This can
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Fig. 9. Acceleration of the mechanical arm for higher frequency: (a) for o¼ 100 kHz; (b) for o¼ 10 kHz.
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be the cause of a slight difference between theoretical and experimental results. Another remark is that as the audio
amplifier affects the electric output frequency, despite the device is far from resonance, there is a mechanical motion.

To see experimentally what happens at a higher frequency, we set R7 ¼ 1 kO and R8 ¼ 100 kO and vary C2 from 10 nF to
0.25 mF, that is to vary the frequency of the electric signal from 150 to 1 kHz. The other parameters are defined as above. As
the control parameter varies, the acceleration of the mechanical arm is quite clear for higher frequencies 150 kHz for
C2=10.72 nF (Fig. 9a) and becomes a sort of noisy dressing and asymmetrical shape for C2=2.4 nF corresponding to 10 kHz
(Fig. 9b). It is quite difficult to determine the value of the deflection since the displacement is very weak. Thus, very far
from resonance, even with the audio amplifier, the mechanical arm is near the steady state. These results have been
obtained theoretically [5–7] and experimentally [13] in MaMES.

5. Conclusion

In this paper, a self-sustained MaEMS was considered. The device is made up of an electric implementation of a RD
oscillator driving a flexible arm. The RD was designed using analog components. An audio amplifier has been integrated in
order to avoid experimental constraints. Using linear stability analysis, the Lyapunov exponent and bifurcation diagram,
quenching phenomenon and chaos have been predicted to occur in the behaviors of the device. An experimental model
was fabricated and by tuning the coupling resistance, experimental results agree with the theoretical ones. A slight
difference in some physical values is observed due to imperfections in the experimental model and various
approximations.

Results of the work are relevant to a broad variety of applications including actuation, mixing, energy autonomy and
switches. The device presents bifurcations and chaotic behavior which can be used in the optimization process such as
shaking, mixing and manufacturing chain. The quenching phenomenon can be used in switching conditions to avoid
oscillation corresponding to a given value of the system parameter.
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